Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4443, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927254

RESUMO

A significant proportion of colorectal cancer (CRC) patients develop peritoneal metastases (PM) in the course of their disease. PMs are associated with a poor quality of life, significant morbidity and dismal disease outcome. To improve care for this patient group, a better understanding of the molecular characteristics of CRC-PM is required. Here we present a comprehensive molecular characterization of a cohort of 52 patients. This reveals that CRC-PM represent a distinct CRC molecular subtype, CMS4, but can be further divided in three separate categories, each presenting with unique features. We uncover that the CMS4-associated structural protein Moesin plays a key role in peritoneal dissemination. Finally, we define specific evolutionary features of CRC-PM which indicate that polyclonal metastatic seeding underlies these lesions. Together our results suggest that CRC-PM should be perceived as a distinct disease entity.


Assuntos
Neoplasias Colorretais , Segunda Neoplasia Primária , Neoplasias Peritoneais , Neoplasias Colorretais/patologia , Humanos , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/secundário , Peritônio/metabolismo , Qualidade de Vida
2.
Nature ; 608(7924): 724-732, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948631

RESUMO

The lymphocyte genome is prone to many threats, including programmed mutation during differentiation1, antigen-driven proliferation and residency in diverse microenvironments. Here, after developing protocols for expansion of single-cell lymphocyte cultures, we sequenced whole genomes from 717 normal naive and memory B and T cells and haematopoietic stem cells. All lymphocyte subsets carried more point mutations and structural variants than haematopoietic stem cells, with higher burdens in memory cells than in naive cells, and with T cells accumulating mutations at a higher rate throughout life. Off-target effects of immunological diversification accounted for approximately half of the additional differentiation-associated mutations in lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every on-target IGHV mutation during the germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than in stem cells, with around 15% of deletions being attributable to off-target recombinase-activating gene activity. DNA damage from ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory cells. The mutation burden and signatures of normal B cells were broadly similar to those seen in many B-cell cancers, suggesting that malignant transformation of lymphocytes arises from the same mutational processes that are active across normal ontogeny. The mutational landscape of normal lymphocytes chronicles the off-target effects of programmed genome engineering during immunological diversification and the consequences of differentiation, proliferation and residency in diverse microenvironments.


Assuntos
Linfócitos , Mutação , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Diferenciação Celular , Proliferação de Células , Microambiente Celular , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Centro Germinativo/citologia , Centro Germinativo/imunologia , Humanos , Memória Imunológica/genética , Linfócitos/citologia , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Neoplasias/genética , Neoplasias/patologia
3.
Cell Rep ; 39(8): 110858, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35613583

RESUMO

γδ T cells are generally considered innate-like lymphocytes, however, an "adaptive-like" γδ compartment has now emerged. To understand transcriptional regulation of adaptive γδ T cell immunobiology, we combined single-cell transcriptomics, T cell receptor (TCR)-clonotype assignment, ATAC-seq, and immunophenotyping. We show that adult Vδ1+ T cells segregate into TCF7+LEF1+Granzyme Bneg (Tnaive) or T-bet+Eomes+BLIMP-1+Granzyme B+ (Teffector) transcriptional subtypes, with clonotypically expanded TCRs detected exclusively in Teffector cells. Transcriptional reprogramming mirrors changes within CD8+ αß T cells following antigen-specific maturation and involves chromatin remodeling, enhancing cytokine production and cytotoxicity. Consistent with this, in vitro TCR engagement induces comparable BLIMP-1, Eomes, and T-bet expression in naive Vδ1+ and CD8+ T cells. Finally, both human cytomegalovirus and Plasmodium falciparum infection in vivo drive adaptive Vδ1 T cell differentiation from Tnaive to Teffector transcriptional status, alongside clonotypic expansion. Contrastingly, semi-invariant Vγ9+Vδ2+ T cells exhibit a distinct "innate-effector" transcriptional program established by early childhood. In summary, adaptive-like γδ subsets undergo a pathogen-driven differentiation process analogous to conventional CD8+ T cells.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T , Adulto , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Pré-Escolar , Granzimas/metabolismo , Humanos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/metabolismo
4.
Elife ; 102021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34424199

RESUMO

The exact immunopathophysiology of community-acquired pneumonia (CAP) caused by SARS-CoV-2 (COVID-19) remains clouded by a general lack of relevant disease controls. The scarcity of single-cell investigations in the broader population of patients with CAP renders it difficult to distinguish immune features unique to COVID-19 from the common characteristics of a dysregulated host response to pneumonia. We performed integrated single-cell transcriptomic and proteomic analyses in peripheral blood mononuclear cells from a matched cohort of eight patients with COVID-19, eight patients with CAP caused by Influenza A or other pathogens, and four non-infectious control subjects. Using this balanced, multi-omics approach, we describe shared and diverging transcriptional and phenotypic patterns-including increased levels of type I interferon-stimulated natural killer cells in COVID-19, cytotoxic CD8 T EMRA cells in both COVID-19 and influenza, and distinctive monocyte compositions between all groups-and thereby expand our understanding of the peripheral immune response in different etiologies of pneumonia.


Assuntos
COVID-19/imunologia , Infecções Comunitárias Adquiridas/imunologia , Influenza Humana/imunologia , Análise de Célula Única , Adulto , Feminino , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade
5.
Cell Stem Cell ; 28(11): 2009-2019.e4, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34358441

RESUMO

The tissue dynamics that govern maintenance and regeneration of the pancreas remain largely unknown. In particular, the presence and nature of a cellular hierarchy remains a topic of debate. Previous lineage tracing strategies in the pancreas relied on specific marker genes for clonal labeling, which left other populations untested and failed to account for potential widespread phenotypical plasticity. Here we employed a tracing system that depends on replication-induced clonal marks. We found that, in homeostasis, steady acinar replacement events characterize tissue dynamics, to which all acinar cells have an equal ability to contribute. Similarly, regeneration following pancreatitis was best characterized by an acinar self-replication model because no evidence of a cellular hierarchy was detected. In particular, rapid regeneration in the pancreas was found to be driven by an accelerated rate of acinar fission-like events. These results provide a comprehensive and quantitative model of cell dynamics in the exocrine pancreas.


Assuntos
Pâncreas Exócrino , Pancreatite , Células Acinares , Homeostase , Humanos , Pâncreas
6.
Nature ; 594(7863): 436-441, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079128

RESUMO

A delicate equilibrium of WNT agonists and antagonists in the intestinal stem cell (ISC) niche is critical to maintaining the ISC compartment, as it accommodates the rapid renewal of the gut lining. Disruption of this balance by mutations in the tumour suppressor gene APC, which are found in approximately 80% of all human colon cancers, leads to unrestrained activation of the WNT pathway1,2. It has previously been established that Apc-mutant cells have a competitive advantage over wild-type ISCs3. Consequently, Apc-mutant ISCs frequently outcompete all wild-type stem cells within a crypt, thereby reaching clonal fixation in the tissue and initiating cancer formation. However, whether the increased relative fitness of Apc-mutant ISCs involves only cell-intrinsic features or whether Apc mutants are actively involved in the elimination of their wild-type neighbours remains unresolved. Here we show that Apc-mutant ISCs function as bona fide supercompetitors by secreting WNT antagonists, thereby inducing differentiation of neighbouring wild-type ISCs. Lithium chloride prevented the expansion of Apc-mutant clones and the formation of adenomas by rendering wild-type ISCs insensitive to WNT antagonists through downstream activation of WNT by inhibition of GSK3ß. Our work suggests that boosting the fitness of healthy cells to limit the expansion of pre-malignant clones may be a powerful strategy to limit the formation of cancers in high-risk individuals.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Competição entre as Células , Genes APC , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Mutação , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/deficiência , Animais , Diferenciação Celular/genética , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Neoplasias Intestinais/metabolismo , Cloreto de Lítio/farmacologia , Masculino , Camundongos , Organoides/citologia , Organoides/metabolismo , Organoides/patologia , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo
7.
Nat Commun ; 12(1): 1407, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658498

RESUMO

Malignant rhabdoid tumour (MRT) is an often lethal childhood cancer that, like many paediatric tumours, is thought to arise from aberrant fetal development. The embryonic root and differentiation pathways underpinning MRT are not firmly established. Here, we study the origin of MRT by combining phylogenetic analyses and single-cell mRNA studies in patient-derived organoids. Comparison of somatic mutations shared between cancer and surrounding normal tissues places MRT in a lineage with neural crest-derived Schwann cells. Single-cell mRNA readouts of MRT differentiation, which we examine by reverting the genetic driver mutation underpinning MRT, SMARCB1 loss, suggest that cells are blocked en route to differentiating into mesenchyme. Quantitative transcriptional predictions indicate that combined HDAC and mTOR inhibition mimic MRT differentiation, which we confirm experimentally. Our study defines the developmental block of MRT and reveals potential differentiation therapies.


Assuntos
Mutação , Tumor Rabdoide/genética , Tumor Rabdoide/patologia , Diferenciação Celular/genética , Metilação de DNA , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Crista Neural/patologia , Filogenia , Tumor Rabdoide/tratamento farmacológico , Proteína SMARCB1/genética , Análise de Célula Única , Serina-Treonina Quinases TOR/antagonistas & inibidores , Técnicas de Cultura de Tecidos/métodos
8.
J Exp Med ; 217(3)2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31845972

RESUMO

Plasmacytoid dendritic cells (pDCs) produce type I interferon (IFN-I) and are traditionally defined as being BDCA-2+CD123+. pDCs are not readily detectable in healthy human skin, but have been suggested to accumulate in wounds. Here, we describe a CD1a-bearing BDCA-2+CD123int DC subset that rapidly infiltrates human skin wounds and comprises a major DC population. Using single-cell RNA sequencing, we show that these cells are largely activated DCs acquiring features compatible with lymph node homing and antigen presentation, but unexpectedly express both BDCA-2 and CD123, potentially mimicking pDCs. Furthermore, a third BDCA-2-expressing population, Axl+Siglec-6+ DCs (ASDC), was also found to infiltrate human skin during wounding. These data demonstrate early skin infiltration of a previously unrecognized CD123intBDCA-2+CD1a+ DC subset during acute sterile inflammation, and prompt a re-evaluation of previously ascribed pDC involvement in skin disease.


Assuntos
Células Dendríticas/metabolismo , Inflamação/metabolismo , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Pele/metabolismo , Apresentação de Antígeno/fisiologia , Antígenos CD1/metabolismo , Humanos , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Linfonodos/metabolismo
9.
Science ; 365(6460): 1461-1466, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31604275

RESUMO

Tissue-resident immune cells are important for organ homeostasis and defense. The epithelium may contribute to these functions directly or by cross-talk with immune cells. We used single-cell RNA sequencing to resolve the spatiotemporal immune topology of the human kidney. We reveal anatomically defined expression patterns of immune genes within the epithelial compartment, with antimicrobial peptide transcripts evident in pelvic epithelium in the mature, but not fetal, kidney. A network of tissue-resident myeloid and lymphoid immune cells was evident in both fetal and mature kidney, with postnatal acquisition of transcriptional programs that promote infection-defense capabilities. Epithelial-immune cross-talk orchestrated localization of antibacterial macrophages and neutrophils to the regions of the kidney most susceptible to infection. Overall, our study provides a global overview of how the immune landscape of the human kidney is zonated to counter the dominant immunological challenge.


Assuntos
Rim/imunologia , Macrófagos/citologia , Neutrófilos/citologia , Adulto , Animais , Células Epiteliais/citologia , Feminino , Feto , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Rim/anatomia & histologia , Rim/citologia , Linfócitos/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Mieloides/citologia , RNA-Seq , Análise de Célula Única , Infecções Urinárias/imunologia
10.
Nat Med ; 25(7): 1153-1163, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209336

RESUMO

Human lungs enable efficient gas exchange and form an interface with the environment, which depends on mucosal immunity for protection against infectious agents. Tightly controlled interactions between structural and immune cells are required to maintain lung homeostasis. Here, we use single-cell transcriptomics to chart the cellular landscape of upper and lower airways and lung parenchyma in healthy lungs, and lower airways in asthmatic lungs. We report location-dependent airway epithelial cell states and a novel subset of tissue-resident memory T cells. In the lower airways of patients with asthma, mucous cell hyperplasia is shown to stem from a novel mucous ciliated cell state, as well as goblet cell hyperplasia. We report the presence of pathogenic effector type 2 helper T cells (TH2) in asthmatic lungs and find evidence for type 2 cytokines in maintaining the altered epithelial cell states. Unbiased analysis of cell-cell interactions identifies a shift from airway structural cell communication in healthy lungs to a TH2-dominated interactome in asthmatic lungs.


Assuntos
Asma/patologia , Pulmão/citologia , Adulto , Idoso , Linfócitos T CD4-Positivos/fisiologia , Comunicação Celular , Células Epiteliais/imunologia , Células Epiteliais/fisiologia , Feminino , Estudo de Associação Genômica Ampla , Células Caliciformes/metabolismo , Humanos , Pulmão/imunologia , Pulmão/patologia , Masculino , Metaplasia , Pessoa de Meia-Idade , Células Th2/fisiologia , Transcriptoma
11.
Am J Respir Cell Mol Biol ; 61(1): 31-41, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30995076

RESUMO

Lung disease accounts for every sixth death globally. Profiling the molecular state of all lung cell types in health and disease is currently revolutionizing the identification of disease mechanisms and will aid the design of novel diagnostic and personalized therapeutic regimens. Recent progress in high-throughput techniques for single-cell genomic and transcriptomic analyses has opened up new possibilities to study individual cells within a tissue, classify these into cell types, and characterize variations in their molecular profiles as a function of genetics, environment, cell-cell interactions, developmental processes, aging, or disease. Integration of these cell state definitions with spatial information allows the in-depth molecular description of cellular neighborhoods and tissue microenvironments, including the tissue resident structural and immune cells, the tissue matrix, and the microbiome. The Human Cell Atlas consortium aims to characterize all cells in the healthy human body and has prioritized lung tissue as one of the flagship projects. Here, we present the rationale, the approach, and the expected impact of a Human Lung Cell Atlas.


Assuntos
Pneumopatias/patologia , Pulmão/patologia , Humanos , Pulmão/metabolismo , Transcriptoma/genética
12.
Methods Mol Biol ; 1979: 9-21, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31028629

RESUMO

The starting material for all single-cell protocols is a cell suspension. The particular functions and spatial distribution of immune cells generally make them easy to isolate them from the tissues where they dwell. Here we describe tissue dissociation protocols that have been used to obtain human immune cells from lymphoid and nonlymphoid tissues to be then used as input to single-cell methods. We highlight the main factors that can influence the final quality of single-cell data, namely the stress signatures that can bias its interpretation.


Assuntos
Perfilação da Expressão Gênica/métodos , RNA/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Manejo de Espécimes/métodos , Fracionamento Celular/métodos , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Linfonodos/citologia , Linfonodos/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , RNA/sangue , RNA/isolamento & purificação , Pele/citologia , Pele/metabolismo , Baço/citologia , Baço/metabolismo
13.
Nature ; 563(7730): 197-202, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30356220

RESUMO

As the first line of defence against pathogens, cells mount an innate immune response, which varies widely from cell to cell. The response must be potent but carefully controlled to avoid self-damage. How these constraints have shaped the evolution of innate immunity remains poorly understood. Here we characterize the innate immune response's transcriptional divergence between species and variability in expression among cells. Using bulk and single-cell transcriptomics in fibroblasts and mononuclear phagocytes from different species, challenged with immune stimuli, we map the architecture of the innate immune response. Transcriptionally diverging genes, including those that encode cytokines and chemokines, vary across cells and have distinct promoter structures. Conversely, genes that are involved in the regulation of this response, such as those that encode transcription factors and kinases, are conserved between species and display low cell-to-cell variability in expression. We suggest that this expression pattern, which is observed across species and conditions, has evolved as a mechanism for fine-tuned regulation to achieve an effective but balanced response.


Assuntos
Células/metabolismo , Evolução Molecular , Imunidade Inata/genética , Imunidade Inata/imunologia , Especificidade de Órgãos/genética , Especificidade da Espécie , Transcrição Gênica/genética , Animais , Células/citologia , Citocinas/genética , Humanos , Regiões Promotoras Genéticas/genética
14.
Science ; 361(6402): 594-599, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30093597

RESUMO

Messenger RNA encodes cellular function and phenotype. In the context of human cancer, it defines the identities of malignant cells and the diversity of tumor tissue. We studied 72,501 single-cell transcriptomes of human renal tumors and normal tissue from fetal, pediatric, and adult kidneys. We matched childhood Wilms tumor with specific fetal cell types, thus providing evidence for the hypothesis that Wilms tumor cells are aberrant fetal cells. In adult renal cell carcinoma, we identified a canonical cancer transcriptome that matched a little-known subtype of proximal convoluted tubular cell. Analyses of the tumor composition defined cancer-associated normal cells and delineated a complex vascular endothelial growth factor (VEGF) signaling circuit. Our findings reveal the precise cellular identities and compositions of human kidney tumors.


Assuntos
Neoplasias Renais/genética , Neoplasias Renais/patologia , Rim/metabolismo , Transcriptoma , Adulto , Carcinoma de Células Renais/classificação , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Criança , Variação Genética , Humanos , Rim/embriologia , Neoplasias Renais/classificação , Análise de Célula Única , Tumor de Wilms/classificação , Tumor de Wilms/genética , Tumor de Wilms/patologia
15.
Eur J Immunol ; 48(10): 1644-1662, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30051906

RESUMO

CD8 T cells acquire cytotoxic molecules including granzyme B during effector differentiation. Both tissue-resident memory CD8 T cells (Trm) and circulating CD45RA+ effector-type T cells (Temra) cells have the ability to retain granzyme B protein expression into the memory phase, but it is unclear how this persistence of cytolytic activity is regulated during steady state. Previously, we have described that the transcriptional regulators Hobit and Blimp-1 have overlapping target genes that include granzyme B, but their impact on the regulation of cytotoxicity in Trm and Temra cells during homeostasis has remained unclear. We examined the expression regulation of Hobit and Blimp-1 in murine and human CD8 T-cells to determine their timeframe of activity. While Blimp-1 mRNA was expressed throughout effector and memory T cells, Blimp-1 protein, was only transiently expressed during the effector stage. In contrast, Hobit mRNA and protein expression was stably maintained during quiescence, but downregulated after activation. Notably, Blimp-1 was required for expression of granzyme B in murine effector T cells and Trm, while Hobit specifically regulated granzyme B in murine Trm during the memory phase. These findings suggest that Blimp-1 initiates cytotoxic effector function and that Hobit maintains cytotoxicity in a deployment-ready modus in Trm.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fatores de Transcrição/genética , Animais , Células Cultivadas , Regulação da Expressão Gênica/imunologia , Granzimas/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
16.
Front Immunol ; 8: 325, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28392788

RESUMO

The T cell lineage is commonly divided into CD4-expressing helper T cells that polarize immune responses through cytokine secretion and CD8-expressing cytotoxic T cells that eliminate infected target cells by virtue of the release of cytotoxic molecules. Recently, a population of CD4+ T cells that conforms to the phenotype of cytotoxic CD8+ T cells has received increased recognition. These cytotoxic CD4+ T cells display constitutive expression of granzyme B and perforin at the protein level and mediate HLA class II-dependent killing of target cells. In humans, this cytotoxic profile is found within the human cytomegalovirus (hCMV)-specific, but not within the influenza- or Epstein-Barr virus-specific CD4+ T cell populations, suggesting that, in particular, hCMV infection induces the formation of cytotoxic CD4+ T cells. We have previously described that the transcription factor Homolog of Blimp-1 in T cells (Hobit) is specifically upregulated in CD45RA+ effector CD8+ T cells that arise after hCMV infection. Here, we describe the expression pattern of Hobit in human CD4+ T cells. We found Hobit expression in cytotoxic CD4+ T cells and accumulation of Hobit+ CD4+ T cells after primary hCMV infection. The Hobit+ CD4+ T cells displayed highly overlapping characteristics with Hobit+ CD8+ T cells, including the expression of cytotoxic molecules, T-bet, and CX3CR1. Interestingly, γδ+ T cells that arise after hCMV infection also upregulate Hobit expression and display a similar effector phenotype as cytotoxic CD4+ and CD8+ T cells. These findings suggest a shared differentiation pathway in CD4+, CD8+, and γδ+ T cells that may involve Hobit-driven acquisition of long-lived cytotoxic effector function.

17.
Genome Biol ; 18(1): 54, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28340618

RESUMO

A recently published study in Genome Biology shows that cells isolated from cryopreserved tissues are a reliable source of genetic material for single-cell RNA-sequencing experiments.Please see related Method article: http://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1171-9.


Assuntos
Criopreservação , Análise de Sequência de RNA , Análise de Célula Única/métodos , Animais , Humanos , RNA/genética
18.
Hum Mol Genet ; 25(R2): R141-R148, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27412011

RESUMO

Recent developments in the field of single-cell genomics (SCG) are changing our understanding of how functional phenotypes of cell populations emerge from the behaviour of individual cells. Some of the applications of SCG include the discovery of new gene networks and novel cell subpopulations, fine mapping of transcription kinetics, and the relationships between cell clonality and their functional phenotypes. Immunology is one of the fields that is benefiting the most from such advancements, providing us with completely new insights into mammalian immunity. In this review, we start by covering new immunological insights originating from the use of single-cell genomic tools, specifically single-cell RNA-sequencing. Furthermore, we discuss how new genetic study designs are starting to explain inter-individual variation in the immune response. We conclude with a perspective on new multi-omics technologies capable of integrating several readouts from the same single cell and how such techniques might push our biological understanding of mammalian immunity to a new level.

19.
Cell Rep ; 15(8): 1757-70, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27184850

RESUMO

Natural killer (NK) cells possess potent cytotoxic mechanisms that need to be tightly controlled. Here, we explored the regulation and function of GPR56/ADGRG1, an adhesion G protein-coupled receptor implicated in developmental processes and expressed distinctively in mature NK cells. Expression of GPR56 was triggered by Hobit (a homolog of Blimp-1 in T cells) and declined upon cell activation. Through studying NK cells from polymicrogyria patients with disease-causing mutations in ADGRG1, encoding GPR56, and NK-92 cells ectopically expressing the receptor, we found that GPR56 negatively regulates immediate effector functions, including production of inflammatory cytokines and cytolytic proteins, degranulation, and target cell killing. GPR56 pursues this activity by associating with the tetraspanin CD81. We conclude that GPR56 inhibits natural cytotoxicity of human NK cells.


Assuntos
Células Matadoras Naturais/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Citocinas/farmacologia , Citotoxicidade Imunológica/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Sinapses Imunológicas/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Malformações do Desenvolvimento Cortical/patologia , Receptores Acoplados a Proteínas G/deficiência , Tetraspanina 28/metabolismo , Fatores de Transcrição/metabolismo
20.
Eur J Immunol ; 45(9): 2433-45, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26228786

RESUMO

CD8(+) T cells are important for immunity against human cytomegalovirus (HCMV). The HCMV-specific CD8(+) T-cell response is characterized by the accumulation of terminally differentiated effector cells that have downregulated the costimulatory molecules CD27 and CD28. These HCMV-specific CD8(+) T cells maintain high levels of cytotoxic molecules such as granzyme B and rapidly produce the inflammatory cytokine IFN-γ upon activation. Remarkably, HCMV-specific CD8(+) T cells are able to persist long term as fully functional effector cells, suggesting a unique differentiation pathway that is distinct from the formation of memory CD8(+) T cells after infection with acute viruses. In this review, we aim to highlight the most recent developments in HCMV-specific CD8(+) T-cell differentiation, maintenance, tissue distribution, metabolism and function. HCMV also induces the differentiation of effector CD4(+) T cells and NK cells, which share characteristics with HCMV-specific CD8(+) T cells. We propose that the overlap in differentiation of NK cells, CD4(+) and CD8(+) T cells after HCMV infection may be regulated by a shared transcriptional machinery. A better understanding of the molecular framework of HCMV-specific CD8(+) T-cell responses may benefit vaccine design, as these cells uniquely combine the capacity to rapidly respond to infection with long-term survival.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Células Matadoras Naturais/imunologia , Antígenos CD28/genética , Antígenos CD28/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular/imunologia , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/virologia , Regulação da Expressão Gênica , Granzimas/genética , Granzimas/imunologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Células Matadoras Naturais/patologia , Células Matadoras Naturais/virologia , Ativação Linfocitária , Transdução de Sinais , Transcrição Gênica , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...